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Abstract Light-front Hamiltonian, path integral and BRST formulations of the Nielsen–
Olesen (Bogomol’nyi) model in two-space one-time dimensions are investigated under the
appropriate the light-cone gauges.

1 Introduction

The models of quantum electrodynamics with a Higgs potential namely, the Abelian Higgs
models involving the vector gauge field Aμ (xμ) in lower dimensions have been of a wide
interest in the recent years [1–29]. These models involving a Maxwell term which accounts
for the Kinetic energy of the vector gauge field Aμ (xμ), represent field theoretical models
which could be considered as effective theories of the Ginsburg–Landau-type for supercon-
ductivity [1–29] are, in fact, the relativistic generalizations of the well known Ginsburg–
Landau phenomenological field theory models of superconductivity [1–26] and are known
as the Nielsen–Olesen (vortex) models (NOM) [1–29]. Further, when the parameters of the
Higgs potential are chosen such that the scalar (spin zero) particle and the vector (spin one)
particle masses are equal, i.e., if we set the masses of scalar (Higgs boson) and that of the
vector spin one particle (photon) to be equal then the above NOM reduces to the so-called
Bomol’nyi model [1–29] which describes a system on the boundary between type-I and
type-II superconductivity and admits self dual solitons [1–29]. In the present work we study
the light-cone quantization (LCQ) of this class of models.

In Ref. [27], we have studied the Hamiltonian [30–51], path integral [30–51] and Becchi–
Rouet–Stora and Tyutin (BRST) [30–51] quantization of the NOM, in the usual equal-time
or the instant-form (IF) of dynamics (on the hyperplanes: x0 = t = constant) [52–61]. In
the present work we study the light-cone quantization (LCQ) or the light-front quantization
[52–61] of the theory using the front-form (FF) of dynamics (on the hyperplanes of the light-
front: light-cone time (x+ ≡ τ) = (x0 + x1)/

√
2 = constant) describing the FF of dynamics
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[52–61]. We have also studied this theory in the broken (or frozen) symmetry phase [28, 29],
where the phase ϕ(xμ) of the complex matter field Φ(xμ) carries the charge degree of free-
dom of the complex matter field and is, in fact, akin to the Goldstone Boson [28, 29]. Also,
because the light-front coordinates are not related to the conventional IF coordinates by a
finite Lorentz transformation, the descriptions of the same physical result may be different
in the IF and FF [52–61] of dynamics of a system and the LCQ often has some advantages
over the conventional IF or equal-time quantization (a somewhat detailed discussion on this
issue of IF versus FF quantization is given in the last section). In view of this, in the present
work, we study the LCQ including the Hamiltonian, path integral and BRST [30–51] formu-
lations of this class of models describing the Nielsen–Olesen (Bogomol’nyi) models under
appropriate light-cone gauges. This is being done in the next section. Finally the summary
and discussion is given in Sect. 3.

2 Light-Cone Quantization of the Nielsen–Olesen (Bogomol’nyi) Model

The Nielsen–Olesen (Bogomol’nyi) model in two-space one-time dimensions is defined by
the action [1–29]:

S1 =
∫

L1(Φ,Φ∗,Aμ)d3x, (1a)

L1 =
[
−1

4
FμνF

μν + (D̃μΦ∗)(DμΦ) − V (|Φ|2)
]
, (1b)

V (|Φ|2) = [α0 + α2|Φ|2 + α4|Φ|4] = [λ(|Φ|2 − Φ2
0 )2], Φ0 �= 0, (1c)

Fμν = (∂μAν − ∂νAμ), Dμ = (∂μ + ieAμ), D̃μ = (∂μ − ieAμ), (1d)

gμν := diag(+1,−1,−1), μ, ν = 0,1,2. (1e)

This model popularly called as the Nielsen–Olesen (vortex) model is, in fact a relativistic
generalization of the well known Ginsburg–Landau model which is a phenomenological
field theory model of superconductivity and it possesses stable, time-independent, classical
solutions called as the two-dimensional solitons which are topological solitons of the vortex
type [1–29].

In a quantum theory of the kind that we are considering here (with a specific form
of the Higgs potential which admits static solutions), in general, one could have two
degenerate minima: a symmetry breaking minimum, and a symmetry preserving mini-
mum and correspondingly the theory could have two types of classical solutions: topo-
logical vortices with quantized magnetic flux as we have in the Nielsen–Olesen model
or Ginsburg–Landau model, where it is possible to define a conserved topological cur-
rent and a corresponding topological charge which is quantized and is related to the topo-
logical quantum number called the winding number, and the other type of solutions are
the nontopological solutions with nonvanishing but not necessarily quantized magnetic
flux [1–29].

In this model, the field Fμν has a simple meaning so that the field F12 measures the
number of vortex lines (going in the 3 direction) which pass an unit square in the (12)-plane.
The vortex line is identified with a dual string and the flux of vortex lines is quantized.
Accordingly, the main new result of this theory is the identification of the Ginsburg–Landau
theory with the static solution of the Higgs type of Lagrangian [1–29].
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In this NOM, considered with a Higgs potential in the form of a double well potential
with Φ0 �= 0, the spontaneous symmetry breaking takes place due to the non-invariance of
the lowest (ground) state of the system (because Φ0 �= 0) under the operation of the local
U(1) symmetry. and the symmetry which is broken is still a symmetry of the system and
it is manifested in a manner other than the invariance of the lowest Ground) state (Φ0) of
the system. However, no Goldstone boson occurs here and instead the gauge field acquires
a mass through some kind of a Higgs mechanism and the symmetry is manifested in the
Higgs mode.

Further, when the parameters of the Higgs potential are chosen such that the scalar (spin
zero) particle and the vector (spin one) particle masses are equal, i.e., if we set the masses
of scalar (Higgs boson) and that of the vector spin one particle (photon) to be equal by
setting [1–29]:

mHiggs = mphoton = eΦ0, λ = 1

2
e2, V (|Φ|2) = 1

2
e2(|Φ|2 − Φ2

0 )2 (2)

then above NOM reduces to the so-called Bomol’nyi model [1–29] which describes a sys-
tem on the boundary between type-I and type-II superconductivity and admits self dual
solitons [1–29]. In our present work, however, the Higgs potential is kept rather general,
i.e., we do not make any specific choice for the parameters of the Higgs potential except
that they are chosen such that the potential remains a double well potential with Φ0 �= 0,
and therefore our considerations remain valid for both the Nielsen–Olesen as well as the
Bogomol’nyi models. For further details we refer to the work of Refs. [1–29]. In the next
section we consider the light-front Hamiltonian and path integral formulations of this model
under some specific light-cone gauges.

2.1 Hamiltonian and Path Integral Formulations

For considering the Hamiltonian and path integral formulations of this model on the light-
front i.e., on the hyperplanes: x+ = (x0 +x1)/

√
2 = constant [52–61], we express the action

of the theory in the light-front frame, which in (2 + 1)-dimensions reads as [1–29]:

S =
∫

Ldx+dx−dx2,

L :=
[

1

2
(∂+A+ − ∂−A−)2 + (∂2A

+ − ∂−A2)(∂2A
− − ∂+A2)

+ (∂+Φ∗)(∂+Φ) + (∂−Φ∗)(∂+Φ) + ieΦA−∂−Φ∗ − ieA−Φ∗∂−Φ

+ ieA+Φ∂+Φ∗ − ieA+Φ∗∂+Φ + 2e2A−A+Φ∗Φ

− (∂2Φ
∗)(∂2Φ) − ieA2Φ∂2Φ

∗ + ieA2Φ
∗∂2Φ − e2A2

2Φ
∗Φ − V (|Φ|2)

]
. (3)

In the following, we would consider the Hamiltonian formulation of the theory described by
the above action. The canonical momenta obtained from the above equation are:

Π := ∂L
∂(∂+Φ)

= (∂−Φ∗ − ieA+Φ∗), Π∗ := ∂L
∂(∂+Φ∗)

= (∂−Φ + ieA+Φ), (4a)

Π+ := ∂L
∂(∂+A−)

= 0, Π− := ∂L
∂(∂+A+)

= (∂+A+ − ∂−A−), (4b)
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E := ∂L
∂(∂+A2)

= (∂−A2 − ∂2A
+). (4c)

Here Π , Π∗, Π+, Π− and E(:= Π2) are the momenta canonically conjugate respectively
to Φ , Φ∗, A−, A+ and A2. The above equations however, imply that the theory possesses
four primary constraints:

χ1 = Π+ ≈ 0, χ2 = [Π − ∂−Φ∗ + ieA+Φ∗] ≈ 0, (5a)

χ3 = [Π∗ − ∂−Φ − ieA+Φ] ≈ 0, χ4 = [E + ∂2A
+ − ∂−A2] ≈ 0. (5b)

Here the symbol ≈ denotes a weak equality (WE) in the sense of Dirac [30–51], and it
implies that these above constraint holds as a strong equalities only on the reduced hy-
persurface of the constraints and not in the rest of the phase space of the classical theory
(and similarly one can consider it as a weak operator equality (WOE) for the corresponding
quantum theory) [30–51]. The canonical Hamiltonian density corresponding to L is:

Hc :=
[
Π∂+Φ + Π∗∂+Φ∗ + Π+∂+A− + Π−∂+A+ + E∂+A2 −L

]

=
[

1

2
e2(Π−)2 + Π−(∂−A−) − (∂2A

−)(∂2A
+ − ∂−A2)

− ieΦA−∂−Φ∗ + ieA−Φ∗∂−Φ − 2e2A−A+Φ∗Φ

+ (∂2Φ
∗)(∂2Φ) + ieA2Φ∂2Φ

∗ − ieA2Φ
∗∂2Φ + e2A2

2Φ
∗Φ + V (|Φ|2)

]
. (6)

After including the primary constraints χ1, χ2, χ3 and χ4 in the canonical Hamiltonian
density Hc with the help of the Lagrange multiplier field u, v, w and z the total Hamiltonian
density HT could be written as:

HT =
[
(Π+)u + (Π − ∂−Φ∗ + ieA+Φ∗)v + (Π∗ − ∂−Φ − ieA+Φ)w + Π−(∂−A−)

+ (E + ∂2A
+ − ∂−A2)z + e2

2
(Π−)2 − (∂2A

−)(∂2A
+ − ∂−A2)

− ieΦA−∂−Φ∗ + ieA−Φ∗∂−Φ − 2e2A−A+Φ∗Φ

+ (∂2Φ
∗)(∂2Φ) + ieA2Φ∂2Φ

∗ − ieA2Φ
∗∂2Φ + e2A2

2Φ
∗Φ + V (|Φ|2)

]
. (7)

The Hamilton’s equations of motion of the theory that preserve the constraints of the theory
in the course of time could be obtained from the total Hamiltonian (and are omitted here for
the sake of bravity):

HT =
∫

HT dx−dx2. (8)

Demanding that the primary constraint χ1 be preserved in the course of time, one obtains
the secondary Gauss-law constraint of the theory as:

χ5 = [ie(ΠΦ − Π∗Φ∗) + ∂2E + ∂−Π−] ≈ 0. (9)



2520 Int J Theor Phys (2007) 46: 2516–2530

The preservation of χ2, χ3 and χ4, for all times does not give rise to any further constraints.
The theory is thus seen to possess only five constraints χi (with i = 1,2,3,4,5):

χ1 = Π+ ≈ 0, (10a)

χ2 = [Π − ∂−Φ∗ + ieA+Φ∗] ≈ 0, (10b)

χ3 = [Π∗ − ∂−Φ − ieA+Φ] ≈ 0, (10c)

χ4 = [E + ∂2A
+ − ∂−A2] ≈ 0, (10d)

χ5 = [ie(ΠΦ − Π∗Φ∗) + ∂2E + ∂−Π−] ≈ 0 (10e)

where χ1, χ2, χ3 and χ4 are primary constraints and χ5 is a secondary constraint. It is now
easily seen that the constraints χ2, χ3, χ4 and χ5 could be combined in to a single constraint:

η = [ie(ΠΦ − Π∗Φ∗) + ∂2E + ∂−Π−] ≈ 0 (11)

and with this modification, the theory is seen to possess a set of only two constraints defined
by:

Ω1 = χ1 = Π+ ≈ 0, Ω2 = η = [ie(ΠΦ − Π∗Φ∗) + ∂2E + ∂−Π−] ≈ 0. (12)

Further, the matrix of the Poisson brackets among the constraints Ω1 and Ω2 is seen to be a
null matrix implying that the set of constraints Ω1 and Ω2 is first-class and that the theory
under consideration is gauge-invariant. The action of the theory is indeed seen to be invariant
under the local vector gauge transformations:

δΦ = iβΦ, δΦ∗ = −iβΦ∗, δA− = −∂+β, δA2 = −∂2β, (13a)

δA+ = −∂−β, δΠ+ = δΠ− = δE = 0, (13b)

δΠ = (−iβ∂−Φ∗ − eβA+Φ∗), δΠ∗ = (iβ∂−Φ − eβA+Φ), (13c)

δu = −∂+∂+β, δv = i(Φ∂+β + β∂+Φ), δw = −i(Φ∗∂+β + β∂+Φ∗), (13d)

δz = −∂+∂2β, δΠu = δΠv = δΠw = δΠz = 0 (13e)

where β ≡ β(x+, x−, x2) is an arbitrary function of its arguments. The divergence of the
vector gauge current density of the theory could now be easily seen to vanish (with ∂μ

jμ = 0), implying that the theory possesses (at the classical level) a local vector-gauge sym-
metry. Now in order to quantize the theory using Dirac’s procedure we convert the set of
first-class constraints of the theory Ω1 and Ω2 into a set of second-class constraints, by im-
posing, arbitrarily, some additional constraints on the system called gauge fixing conditions
(GFC’s) or the gauge constraints. For this purpose, for the present theory, we could choose,
for example, the set of light-cone gauges:

Ψ1 = A+ ≈ 0, Ψ2 = A− ≈ 0. (14)

Here the gauge A+ ≈ 0 represents the light-cone temporal (or time-axial) gauge and the
gauge A− ≈ 0 represents the light-cone coulomb gauge and both of these gauges are physi-
cally important gauges. Corresponding to this gauge choice, the theory has the following set
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of constraints under which the quantization of the theory could be studied:

ξ1 = Ω1 = Π+ ≈ 0, (15a)

ξ2 = Ω2 = [ie(ΠΦ − Π∗Φ∗) + ∂2E + ∂−Π−] ≈ 0, (15b)

ξ3 = Ψ1 = A+ ≈ 0, (15c)

ξ4 = Ψ2 = A− ≈ 0. (15d)

The matrix Rαβ of the Poisson brackets among the set of constraints ξi is seen to be nonsin-
gular with the determinant given by

[||det(Rαβ)||] 1
2 = [[∂−δ(x− − y−)][δ(x− − y−)][δ2(x2 − y2)]]. (16)

The other details of the matrix Rαβ are omitted here for the sake of bravity. Finally, following
the standard Dirac quantization procedure, the nonvanishing equal light-cone-time (ELCT)
commutators of the theory, under the light-cone gauges: Ψi i.e., under A+ ≈ 0 and A− ≈ 0
are obtained as [30–51]:

[Φ(x+, x−, x2),Π(x+, x−, x2)] = (i)δ(x− − y−)δ(x2 − y2), (17a)

[Φ∗(x+, x−, x2),Π
∗(x+, x−, x2)] = (i)δ(x− − y−)δ(x2 − y2), (17b)

[A2(x
+, x−, x2),E(x+, x−, x2)] = (i)δ(x− − y−)δ(x2 − y2), (17c)

[Φ(x+, x−, x2),Π
−(x+, x−, x2)] = −1

2
eΦε(x− − y−)δ(x2 − y2), (17d)

[Φ∗(x+, x−, x2),Π
−(x+, x−, x2)] = 1

2
eΦ∗ε(x− − y−)δ(x2 − y2), (17e)

[Π(x+, x−, x2),Π
−(x+, x−, x2)] = 1

2
eΠε(x− − y−)δ(x2 − y2), (17f)

[Π∗(x+, x−, x2),Π
−(x+, x−, x2)] = −1

2
eΠ∗ε(x− − y−)δ(x2 − y2), (17g)

[A2(x
+, x−, x2),Π

−(x+, x−, x2)]
= [iδ(x− − y−)δ(x2 − y2) − 1

2
iε(x− − y−)∂2δ(x2 − y2)] (17h)

where the step functions ε(x − y) is defined as:

ε(x − y) :=
{+1, (x − y) > 0,

−1, (x − y) < 0.
(18)

Also, for the later use, for considering the BRST formulation of the theory we convert the
total Hamiltonian density into the first order Lagrangian density LI0:

LI0 := [Π(∂+Φ) + Π∗(∂+Φ∗) + Π+(∂+A−) + Π−(∂+A+) + E(∂+A2)

+ Πu(∂+u) + Πv(∂+v) + Πw(∂+w) + Πz(∂+z) −HT r]

= [Π−∂+A+ − Π−∂−A− − e2

2
(Π−)2 + (∂2A

+ − ∂−A2)(∂2A
− − ∂+A2)
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+ (∂−Φ + ieA+Φ)∂+Φ∗ + (∂−Φ∗ − ieA+Φ∗)∂+Φ

+ ieΦA−∂−Φ∗ − ieA−Φ∗∂−Φ + 2e2A−A+Φ∗Φ

− (∂2Φ
∗)∂2Φ − ieA2Φ∂2Φ

∗ + ieA2Φ
∗∂2Φ − e2A2

2Φ
∗Φ − V (|Φ|2)]. (19)

In the path integral formulation, the transition to quantum theory is made by writing the
vacuum to vacuum transition amplitude for the theory called the generating functional Z[Jk]
of the theory under the light-cone gauges: Ψ1 and Ψ2, in the presence of the external sources
Jk [30–51]:

Z[Jk] =
∫

[dμ] exp

[
i

∫
d2σ [JkΦ

k + Π∂+Φ + Π∗∂+Φ∗ + Π+∂+A− + Π−∂+A+

+ E∂+A2 + Πu∂+u + Πv∂+v + Πw∂+w + Πz∂+z −HT ]
]

(20)

where the phase space variables of the theory are: Φk ≡ (Φ,Φ∗,A−,A+,A2, u, v,w, z)

with the corresponding respective canonical conjugate momenta: Πk ≡ (Π,Π∗,Π+,Π−,

E,Πu,

Πv,Πw,Πz). The functional measure [dμ] of the generating functional Z[Jk] under the
light-cone gauges Ψ1 and Ψ2 is obtained as [30–51]:

[dμ] = [∂−δ(x− − y−)][δ(x− − y−)][δ2(x2 − y2)][dΦ][dΦ∗][dA+][dA−][dA2]
× [du][dv][dw][dz][dΠ ][dΠ∗][dΠ−][dΠ+][dE][dΠu][dΠv][dΠw]
× [dΠz]δ[Π+ ≈ 0]δ[(ie(ΠΦ − Π∗Φ∗) + ∂2E + ∂−Π−) ≈ 0]
× δ[A+ ≈ 0]δ[A− ≈ 0]. (21)

The Hamiltonian and path integral quantization of the theory under the light-cone gauges
Ψ1 and Ψ2 is now complete.

2.2 BRST Formulation

For the BRST formulation of the model, we rewrite the theory as a quantum system that pos-
sesses the generalized gauge invariance called BRST symmetry. For this, we first enlarge the
Hilbert space of our gauge-invariant theory and replace the notion of gauge-transformation,
which shifts operators by c-number functions, by a BRST transformation, which mixes op-
erators with Bose and Fermi statistics, we then introduce new anti-commuting variable c

and c̄ (Grassman numbers on the classical level, operators in the quantized theory) and a
commuting variable b such that [30–51]:

δ̂Φ = icΦ, δ̂Φ∗ = −icΦ∗, δ̂A− = −∂+c, δ̂A2 = −∂2c, (22a)

δ̂A+ = −∂−c, δ̂Π+ = δ̂Π− = δ̂E = 0, (22b)

δ̂Π = (−ic∂−Φ∗ − ecA+Φ∗), δ̂Π∗ = (ic∂−Φ − ecA+Φ), (22c)

δ̂u = −∂+∂+c, δ̂v = i(Φ∂+c + c∂+Φ), δ̂w = −i(Φ∗∂+c + c∂+Φ∗), (22d)

δ̂z = −∂+∂2c, δ̂Πu = δ̂Πv = δ̂Πw = δ̂Πz = 0, (22e)

δ̂c = 0, δ̂c̄ = b, δ̂b = 0 (22f)
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with the property δ̂2 = 0. We now define a BRST-invariant function of the dynamical vari-
ables to be a function f (Π,Π∗,Π+,Π−,Πu,Πv,Πw,Πz,pb,Πc,Πc̄,Φ,Φ∗,A+,A−,A2,

E,u, v,w, z, b, c, c̄) , such that δ̂f = 0. Now performing gauge-fixing in the BRST for-
malism implies adding to the first-order Lagrangian density LI0, a trivial BRST-invariant
function [30–51]. We could thus write e.g.:

LBRST :=
[
Π−∂+A+ − Π−∂−A− − e2

2
(Π−)2 + (∂2A

+ − ∂−A2)(∂2A
− − ∂+A2)

+ (∂−Φ + ieA+Φ)∂+Φ∗ + (∂−Φ∗ − ieA+Φ∗)∂+Φ

+ ieΦA−∂−Φ∗ − ieA−Φ∗∂−Φ + 2e2A−A+Φ∗Φ

− (∂2Φ
∗)∂2Φ − ieA2Φ∂2Φ

∗ + ieA2Φ
∗∂2Φ − e2A2

2Φ
∗Φ

− V (|Φ|2) + δ̂

[
c̄

(
−∂+A− + 1

2
b

)]]
. (23)

The last term in the above equation is the extra BRST-invariant gauge-fixing term. After one
integration by parts, the above equation could now be written as:

LBRST :=
[
Π−∂+A+ − Π−∂−A− − e2

2
(Π−)2 + (∂2A

+ − ∂−A2)(∂2A
− − ∂+A2)

+ (∂−Φ + ieA+Φ)∂+Φ∗ + (∂−Φ∗ − ieA+Φ∗)∂+Φ

+ ieΦA−∂−Φ∗ − ieA−Φ∗∂−Φ + 2e2A−A+Φ∗Φ

− (∂2Φ
∗)∂2Φ − ieA2Φ∂2Φ

∗ + ieA2Φ
∗∂2Φ − e2A2

2Φ
∗Φ

− V (|Φ|2) − b(∂+A−) + 1

2
b2 + (∂+c̄)(∂+c)

]
. (24)

Proceeding classically, the Euler–Lagrange equation for b reads:

b = (∂+A−) (25)

the requirement δ̂b = 0 then implies

δ̂b = [δ̂(∂+A−)] (26)

which in turn implies

∂+∂+c = 0. (27)

The above equation is also an Euler–Lagrange equation obtained by the variation of LBRST

with respect to c̄. In introducing momenta one has to be careful in defining those for the
fermionic variables. We thus define the bosonic momenta in the usual manner so that

Π+ := ∂

∂(∂+A−)
LBRST = −b (28)

but for the fermionic momenta with directional derivatives we set

Πc := LBRST

←−
∂

∂(∂+c)
= ∂+c̄, Πc̄ :=

−→
∂

∂(∂+c̄)
LBRST = ∂+c (29)
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implying that the variable canonically conjugate to c is ( ∂+c̄) and the variable conjugate
to c̄ is (∂+c). For writing the Hamiltonian density from the Lagrangian density in the usual
manner we remember that the former has to be Hermitian so that:

HBRST = [Π∂+Φ + Π∗∂+Φ∗ + Π+∂+A− + Π−∂+A+ + E∂+A2 + Πu∂+u

+ Πv∂+v + Πw∂+w + Πz∂+z + Πc(∂+c) + (∂+c̄)Πc̄ −LBRST]

=
[
Πu∂+u + Πv∂+v + Πw∂+w + Πz∂+z + Π−(∂−A−) − Π−(∂+A+)

+ e2

2
(Π−)2 − (∂2A

−)(∂2A
+ − ∂−A2) − 1

2
(Π+)2 + ΠcΠc̄

− ieΦA−∂−Φ∗ + ieA−Φ∗∂−Φ − 2e2A−A+Φ∗Φ

+ (∂2Φ
∗)∂2Φ + ieA2Φ∂2Φ

∗ − ieA2Φ
∗∂2Φ + e2A2

2Φ
∗Φ + V (|Φ|2)

]
. (30)

The consistency of the last two equations could now be easily checked by looking at the
Hamilton’s equations for the fermionic variables. Also for the operators c, c̄, ∂+c and ∂+c̄,
one needs to satisfy the anticommutation relations of ∂+c with c̄ or of ∂+c̄ with c, but not of
c, with c̄. In general, c and c̄ are independent canonical variables and one assumes that

{Πc,Πc̄} = {c̄, c} = ∂+{c̄, c} = 0, {∂+c̄, c} = (−1){∂+c, c̄} (31)

where { , } means an anticommutator. We thus see that the anticommulators in the above
equation are non-trivial and need to be fixed. In order to fix these, we demand that c satisfy
the Heisenberg equation [30–51]:

[c,HBRST] = i∂+c (32)

and using the property c2 = c2 = 0 one obtains

[c,HBRST] = {∂+c̄, c}∂+c. (33)

The last three equations then imply:

{∂+c̄, c} = (−1){∂+c, c̄} = i. (34)

Here the minus sign in the above equation is nontrivial and implies the existence of states
with negative norm in the space of state vectors of the theory. The BRST charge operator Q

is the generator of the BRST transformations. It is nilpotent and satisfies Q2 = 0. It mixes
operators which satisfy Bose and Fermi statistics. According to its conventional definition,
its commutators with Bose operators and its anti-commutators with Fermi operators for the
present theory satisfy:

[Φ,Q] = −iecΦ, [Φ∗,Q] = iecΦ∗,
(35a)

[Π,Q] = iecΠ, [Π∗,Q] = −iecΠ∗,

[A+,Q] = −∂−c, [A−,Q] = ∂+c, [A2,Q] = −∂2c, (35b)

{∂+c̄,Q} = (−∂−Π− − ∂2E − ieΠΦ + ieΠ∗Φ∗), {c̄,Q} = −Π+. (35c)
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All other commutators and anti-commutators involving Q vanish. In view of this, the BRST
charge operator of the present theory can be written as

Q =
∫

dx−dx2[ic(∂−Π− + ∂2E + ieΠΦ − ieΠ∗Φ∗) − i(∂+c)Π+]. (36)

This equation implies that the set of states satisfying the conditions:

Π0|ψ〉 = 0, [∂−Π− + ∂2E + ie(ΠΦ − Π∗Φ∗)]|ψ〉 = 0 (37)

belong to the dynamically stable subspace of states |ψ > satisfying Q|ψ >= 0, i.e.,
it belongs to the set of BRST-invariant states. In order to understand the condition
needed for recovering the physical states of the theory we rewrite the operators c

and c̄ in terms of fermionic annihilation and creation operators. For this purpose we
consider Euler Lagrange equation for the variable c derived earlier. The solution of
this equation gives (for the light-cone time x+ ≡ τ) the Heisenberg operators c(τ )

and correspondingly c̄(τ ) in terms of the fermionic Annihilation and creation opera-
tors as:

c(τ ) = G(τ) + F, c̄(τ ) = G†τ + F †. (38)

Which at the light-cone time τ = 0 imply

c ≡ c(0) = F, c̄(τ ) ≡ c̄(0) = F †, (39a)

∂+c(τ ) ≡ ∂+c(0) = G, ∂+c̄(τ ) ≡ ∂+c̄(0) = G†. (39b)

By imposing the conditions (obtained earlier):

c2 = c̄2 = {c̄, c} = {∂+c̄, ∂+c} = 0, {∂+c̄, c} = (−1){∂+c, c̄} = i (40)

we then obtain

F 2 = F †2 = {F †,F } = {G†,G} = 0, {G†,F } = (−1){G,F †} = i. (41)

Now let |0〉 denote the fermionic vacuum for which

G|0〉 = F |0〉 = 0. (42)

Defining |0〉 to have norm one, the last three equations imply

〈0|FG†|0〉 = i, 〈0|GF †|0〉 = −i (43)

so that

G†|0〉 �= 0, F †|0〉 �= 0. (44)

The theory is thus seen to possess negative norm states in the fermionic sector. The exis-
tence of these negative norm states as free states of the fermionic part of HBRST is, however,
irrelevant to the existence of physical states in the orthogonal subspace of the Hilbert space.
In terms of annihilation and creation operators HBRST is:
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HBRST =
[
Πu∂+u + Πv∂+v + Πw∂+w + Πz∂+z + Π−(∂−A−) − Π−(∂+A+)

+ e2

2
(Π−)2 − (∂2A

−)(∂2A
+ − ∂−A2) − 1

2
(Π+)2 + G†G

− ieΦA−∂−Φ∗ + ieA−Φ∗∂−Φ − 2e2A−A+Φ∗Φ

+ (∂2Φ
∗)∂2Φ + ieA2Φ∂2Φ

∗ − ieA2Φ
∗∂2Φ + e2A2

2Φ
∗Φ + V (|Φ|2)

]
(45)

and the BRST charge operator is:

Q =
∫

dx−dx2[iF (∂−Π− + ∂2E + ieΠΦ − ieΠ∗Φ∗) − iGΠ+]. (46)

Now because Q|ψ〉 = 0, the set of states annihilated by Q contains not only the set for
which the constraints of the theory hold but also additional states for which

F |ψ〉 = G|ψ〉 = 0, (47a)

Π0|ψ〉 �= 0, [∂−Π− + ∂2E + ie(ΠΦ − Π∗Φ∗)]|ψ〉 �= 0. (47b)

The Hamiltonian is also invariant under the anti-BRST transformation given by:

¯̂
δΦ = −ic̄Φ,

¯̂
δΦ∗ = ic̄Φ∗, ¯̂

δA− = ∂+c̄,
¯̂
δA2 = ∂2c̄, (48a)

¯̂
δA+ = ∂−c̄,

¯̂
δΠ+ = ¯̂

δΠ− = ¯̂
δE = 0, (48b)

¯̂
δΠ = (ic̄∂−Φ∗ + ec̄A+Φ∗), ¯̂

δΠ∗ = (−ic̄∂−Φ + ec̄A+Φ), (48c)

¯̂
δu = ∂+∂+c̄,

¯̂
δv = −i(Φ∂+c̄ + c̄∂+Φ),

¯̂
δw = i(Φ∗∂+c̄ + c̄∂+Φ∗), (48d)

¯̂
δz = ∂+∂2c̄,

¯̂
δΠu = ¯̂

δΠv = ¯̂
δΠw = ¯̂

δΠz = 0, (48e)

¯̂
δc̄ = 0,

¯̂
δc = −b,

¯̂
δb = 0 (48f)

with generator or anti-BRST charge

Q̄ =
∫

dx−dx2[−ic̄(∂−Π− + ∂2E + ieΠΦ − ieΠ∗Φ∗) + i(∂+c̄)Π+] (49)

which in terms of annihilation and creation operators reads:

Q̄ =
∫

dx−dx2[−iF †(∂−Π− + ∂2E + ieΠΦ − ieΠ∗Φ∗) + iG†Π+]. (50)

We also have

∂+Q = [Q,HBRST] = 0, ∂+Q̄ = [Q̄,HBRST] = 0 (51)

with

HBRST =
∫

dx−dx2HBRST (52)
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and we further impose the dual condition that both Q and Q̄ annihilate physical states,
implying that:

Q|ψ〉 = 0 and Q̄|ψ〉 = 0. (53)

The states for which the constraints of the theory hold, satisfy both of these conditions
and are in fact, the only states satisfying both of these conditions, since although with
(41)

G†G = (−1)GG† (54)

there are no states of this operator with G†|ψ〉 = 0 and F †|ψ〉 = 0, and hence no free
eigenstates of the fermionic part of HBRST that are annihilated by each of G, G†, F , and
F †. Thus the only states satisfying Q̄|ψ〉 = 0 and Q̄|ψ〉 = 0 are those that satisfy the
constraints of the theory. Now because Q|ψ〉 = 0, the set of states annihilated by Q con-
tains not only the set of states for which the constraints of the theory hold but also addi-
tional states for which the constraints of the theory do not hold in particular. This situa-
tion is, however, easily avoided by additionally imposing on the theory, the dual condition:
Q̄|ψ〉 = 0 and Q̄|ψ〉 = 0. Thus by imposing both of these conditions on the theory si-
multaneously, one finds that the states for which the constraints of the theory hold satisfy
both of these conditions and, in fact, these are the only states satisfying both of these con-
ditions because in view of the conditions on the fermionic variables c and c̄ one cannot
have simultaneously c, ∂+c and c̄, ∂+c̄, applied to |ψ〉 to give zero. Thus the only states
satisfying Q|ψ〉 = 0 and Q̄|ψ〉 = 0 are those that satisfy the constraints of the theory
and they belong to the set of BRST-invariant as well as to the set of anti-BRST-invariant
states.

Alternatively, one can understand the above point in terms of fermionic annihilation and
creation operators as follows. The condition Q|ψ〉 = 0 implies the that the set of states
annihilated by Q contains not only the states for which the constraints of the theory hold but
also additional states for which the constraints do not hold. However, Q̄|ψ〉 = 0 guarantees
that the set of states annihilated by Q̄ contains only the states for which the constraints hold,
simply because G†|ψ〉 �= 0 and F †|ψ〉 �= 0. Thus in this alternative way also we see that the
states satisfying Q|ψ〉 = Q̄|ψ〉 = 0 are only those states that satisfy the constraints of the
theory and also that these states belong to the set of BRST-invariant and anti-BRST-invariant
states. This completes the BRST formulation of the theory.

3 Summary and Discussion

The theory under present consideration has been quantized in Ref. [27], in the IF of dy-
namics (on the hyperplanes x0 = t = constant [52–61]). In the present work the theory is
quantized on the light-front using the FF of dynamics (on the hyperplanes of the light-front:
light-cone time x+ ≡ τ = (x0 + x1)/

√
2 = constant, describing the FF of dynamics [52–

61]). It is important to mention here that a study of both of these forms of dynamics (IF
and FF) for a theory really determines the dynamics of the system (a la Dirac) completely,
necessitating the present study. For further details on the Dirac’s different relativistic forms
of dynamics, we refer to the work of Ref. [52–61].

In this work, we have considered the light-cone Hamiltonian, path integral and BRST
quantization of the Nielsen–Olesen (Bogomol’nyi) model in two-space one-time dimen-
sions. In Ref. [27], the present theory has been studied in the usual instant-form of dynam-
ics (conventional equal-time theory) (on the hyperplanes x0 = t = constant [52–61]). In the
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present work, the theory has been quantized on the light-front. The light-front quantization
which studies the relativistic quantum dynamics of the physical system on the hyperplanes:
x+ ≡ τ = (x0 + x1)/

√
2 = constant. Also called the front-form theory, has several advan-

tages over the conventional instant-form (equal-time) theory. In particular, for a light-front
theory seven out of ten Poincare generators are kinematical while the instant-form theory
has only six kinematical generators [52–61]. In our treatment, we have made the convention
to regard the light-cone variable x+ ≡ τ as the light-front time coordinate and the light-cone
variable x− has been treated as the longitudinal spatial coordinate. The temporal evolution
of the system in x+ is generated by the total Hamiltonian of the system. If we consider the
invariant distance between two spacetime points in (2 + 1) dimension [52–61]:

(x − y)2 := [(x0 − y0)2 − (x1 − y1)2 − (x2 − y2)2] (IF), (55a)

(x − y)2 := [2(x+ − y+)(x− − y−) − (x2 − y2)2] (FF) (55b)

then we find that in the instant-form, the points on the x0 = y0 = constant hyperplanes,
have space-like separation except when they are coincident when it becomes light-like one.
On the light-front, however, with x+ = y+ = constant, the distance becomes independent of
(x− −y−) and the separation again becomes space-like. The light-front field theory therefore
does not necessarily need to be local in x−, even if the corresponding instant-form theory
is formulated as a local one. The nonvanishing equal-time commutators of the instant-form
theory are nonlocal and nonvanishing for space-like distances and violate the microcausal-
ity principle [52–61]. The nonvanishing equal light-cone-time commutators for the present
theory, on the other hand would be nonlocal in the light-cone space variable x− and nonva-
nishing only on the light-cone. There would therefore be no conflict with the microcausality
principle for the light-front theory unlike the case of the equal-time commutators in the
instant-form theory.

The constrained dynamics of the present theory in the instant-form [27], reveals that
the theory possesses a set of two first-class constraints where one constraint is a primary
constraint and the other one is a secondary Gauss law constraint. The matrix of the Poisson
brackets of these two constraints is a singular matrix and therefore they form a set of first-
class constraints, implying in turn, that the corresponding theory is gauge invariant. The
theory is indeed seen to possess a local vector gauge symmetry. For further details of this
work, we refer to the work of Ref. [27].

The constrained dynamics of the theory in the light-front frame as studied in the present
work, reveals that the light-cone theory possesses a set of five first-class constraints where
four constraints are primary and one is a secondary Gauss law constraint.It is further possible
to combine the three primary and one secondary constraints in to a single constraint as
mentioned in the foregoing. As a consequence of this the theory could also be considered
to be having a set of only two constraints Ω1 and Ω2 as we have done. The matrix of the
Poisson brackets of these two constraints is a singular (in fact, a null) matrix implying that
they form a set of first-class constraints. This implies in turn, that the corresponding theory is
a gauge invariant theory. The theory is indeed seen to possess a local vector gauge symmetry,
and correspondingly there exists a conserved local vector gauge current (cf. Sect. 2).

Now because the set of constraints of the theory is first-class, one of the possible ways
to quantize it is the quantization of the theory is possible under some suitable gauge choices
which we have chosen in our present work for the Hamiltonian and path integral quantization
of our theory to be (a) A− ≈ 0, which is a light-cone coulomb gauge and (b) A+ ≈ 0, which
is the light-cone temporal gauge or the light-cone time-axial gauge. These gauge choices are
not only acceptable and consistent with our quantization procedures but are also physically
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more intersting gauge choices representing the coulomb gauge and the time-axial or the
temporal gauge respectively.

However, in the above Hamiltonian and path integral quantization of the theory under
some gauge-fixing conditions the gauge-invariance of the theory gets broken because the
procedure of gauge-fixing converts the set of first-class constraints of the theory into a set
of second-class one, by changing the matrix of the Poisson brackets of the constraints of
the theory from a singular one into a non-singular one. In view of this, in order to achieve
the quantization of our gauge-invariant theory, such that the gauge-invariance of the theory
is maintained even under gauge-fixing, one of the possible ways is go to a more general-
ized procedure called the BRST quantization [30–51], where the extended gauge symmetry
called as the BRST symmetry is maintained even under gauge-fixing. It is therefore desir-
able to achieve this so-called BRST quantization also if possible. This therefore makes a
kind of complete quantization of a theory. The light-cone BRST quantization of the present
theory has been studied by us in the present work, under some specific gauge choice (where
a particular gauge has been chosen by us and which is not unique by any means). In this
procedure, when we embed the original gauge-invariant theory into a BRST system, the
quantum Hamiltonian density HBRST (which includes the gauge-fixing contribution) com-
mutes with the BRST charge as well as with the anti-BRST charge. The new (extended)
gauge symmetry which replaces the gauge invariance is maintained (even under the BRST
gauge-fixing) and hence projecting any state onto the sector of BRST and anti-BRST invari-
ant states yields a theory which is isomorphic to the original gauge-invariant theory [30–51].

It may be worthwhile also to make a few comments about further solving the theory:
it is possible to write down the solutions of the theory on the reduced hypersurface of the
constraints where one has to implement the constraints of the theory strongly and this can be
achieved in the Hamiltonian as well as in the path integral approach [30–51], and is however,
outside the scope of the present work.
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